Measuring Fiber End Face Inspection Microscope Reproducibility using Chrome on Glass Artifacts

Presented at AVFOP 2017

New Orleans, LA November 9, 2017

LOCKHEED MARTIN

Charles DiSaverio Supply Chain Quality Assurance Engineer

Overview

- Lockheed Martin-RMS, Cinch Connectivity, and FiberQA conducted a fiber scope repeatability and reproducibility test.
- Three FastMT-400 fiber scopes (SN 0009, 0058 and 0018) all running SW Version 2.10.9.
- Processed five MT-72 Test Targets (SN 100, A4, C1, C4 and E1).
- Acquired 32 repeat sets of images and data from each target.
- Reduced the data to estimate the particle diameter statistics.
- Estimated guard bands for reproducibility across supply chain.

FastMT Overview

4

- FastMT is a family of fiber inspection microscopes that images all (Model 200) or large portion (Model 400) of the fibers on an MT ferrule simultaneously.
- Fast, accurate imaging, and processing of MT fibers with:
 - Auto focus on all models.
 - Automatic Pass/Fail capability with industry standards or user defined criteria.
- Fixtures available for wide range of MT and Single Fiber connectors.

HCDD-MT-72 Test Target

- Chrome on glass emulation of 72-fiber MT.
- Defects darker than background, with high contrast.
- Emulated fibers with particles (33), scratches (24), and no defects (15).
- Fibers that emulate particle defects have 16 dots at known locations.
- 528 independent diameter estimates per test (33 fibers*16 particles/fiber).

HCDD-MT-72 Ferrule, Particle Layout, and Particle Diameters

Particle Sizes by Fiber										
	Fiber									
Row	1	2	3	4	5	6				
٨	1 50	1 75	2.00	2.25	2 50	Nono				
~	1.50	1.75	2.00	2.25	2.50	None				
В	2.50	2.75	3.00	3.25	3.50	None				
С	3.50	3.75	4.00	4.25	4.50	None				
D	4.50	4.75	5.00	5.25	5.50	9.00				
E	5.50	5.75	6.00	6.25	6.50	9.50				
F	6.50	6.75	7.00	7.25	7.50	10.00				

Results Presented as Images, Graphs, and Tables

- Sample images including raw, enhanced and overlay
- Numerical comparison data across the three FastMT's in the graphs and tables in following slides:
 - Diameter variation about the mean value plotted as min, max and StDev on an XY graph vs. nominal diameter for target SN C1's. Other target's data were similar.
 - Histographs for each FastMT of the diameter (minus mean) for all particle sizes shown as plots for each of the five targets.
 - Diameter bias error computations.
 - Guard band.

Sample Images

Diameter Mean and StDev vs Nominal Diameter: Target-C1

- Mean value of diameter for each particle was computed and subtracted from repeat data.
- Data from particles of the same size were combined.
- Calculated min, max and StDev and plotted on an XY graph.
- These graphs show the diameter variance was independent of diameter, with exception of the smallest diameter.

- The histograph of the diameter errors for each of the five targets are plotted for each FastMT.
- Mean value of diameter for each particle was computed and subtracted from repeat data. Data from particles of all sizes were combined for each target to form the histogram data.

Diameter Bias Error Computations

- Averaged Mean Diameter across all repeats and FastMT units at each nominal diameter.
- Defined Diameter Error = Unit Mean Diameter- Average of All Mean Diameters.
- Plotted as function of nominal diameter by Test Target SN.
- Data for SN C1 shown, others were similar.

Diameter Error Statistics for Target SN: C1

FastMT SN	Min	Max	Mean	StDev
0009	-0.097	0.098	-0.006	0.047
0018	-0.007	0.102	0.035	0.028
0058	-0.176	0.073	-0.029	0.056

Guard Band based on Bias and StDev

- Bias error among units and measurement standard deviation for a given unit can be combined to estimate both systematic and random errors.
- A guard band of about 0.3 µm will effectively eliminate outgoing and incoming Pass/Fail discrepancies.
- Guard band implemented by agreeing on limit adjustments for more stringent criteria as parts move up the supply chain to final end customer delivery.
- From measured bias and Stdev, guard band to achieve a specific reproducibility ratio can be calculated.

Bias	0.100 µm
Standard Deviation (σ)	0.076 µm
Bias + 3σ	0.327 µm

Summary and Conclusions

- Use of multiple MT-72 Test Targets, combined with the automated "Repeat" function in FastMT SW quickly produced large volume of defect diameter measurements.
- Three FastMT's gave very consistent results, with low bias error and low standard deviation of measured values.
 - Bias Error among three units was typically ±0.1 um (worst case ±0.25 um) for defects >1.75 um in diameter
 - Overall StDev across all units was ~ 0.075 um or <1/5th of a pixel (~0.42 um/pixel)
- Combining Bias and StDev yields rational approach to establishment of reproducible guard bands to achieve a desired, low rejection rate.

© 2017 Lockheed Martin Corporation All Rights Reserved. PIRA# OWG201709007

Questions?

- Author Contact Info
 - Charles DiSaverio
 <u>charles.disaverio@lmco.com</u>
 - Chris Wilson
 <u>chris.wilson@us.cinch.com</u>
 - Doug Wilson
 <u>dwilson@fiberqa.com</u>

